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Abstract
We study the relaxation process in a two-dimensional lattice gas model, where
the interactions originate from the excluded volume. In this model particles
have three arms with an asymmetrical shape, which results in geometrical
frustration that inhibits full packing. Relaxation functions are well fitted at
long times by a stretched exponential form, with a β exponent decreasing when
the density is raised until the percolation transition is reached, and constant for
higher densities. The structural arrest of the model seems to happen only at
the maximum density of the model, where both the inverse diffusivity and
the relaxation times diverge with a power law. The dynamical non-linear
susceptibility, defined as the fluctuations of the self-overlap autocorrelation,
exhibits a peak at some characteristic time, which also seems to diverge at the
maximum density.

PACS numbers: 64.70.Pm, 05.50.+q, 75.10.−b

1. Introduction

Most glassy systems, such as structural glasses, ionic conductors, supercooled liquids,
polymers, colloids and spin glasses [1], have similar complex dynamical behaviour. As the
temperature is lowered the relaxation times increase drastically, and the relaxation functions
deviate strongly from a single-exponential function at some temperature T ∗ well above the
dynamical transition. In the long-time regime they can be well fitted by a stretched exponential
or Kohlrausch–Williams–Watts [2] function

φ(t) ∝ exp[−(t/τ )β] (1)
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with 0 < β < 1. There are two mechanisms driving non-exponential relaxation. In
a disordered model such as spin glasses, it is caused by the existence of non-frustrated
ferromagnetic-type clusters of interactions [3], and therefore is a direct consequence of the
quenched disorder [4]. Another mechanism in frustrated systems is based on the percolation
transition of the Kasteleyn–Fortuin and Coniglio–Klein cluster [5]. In this approach disorder
is not needed to obtain non-exponential relaxation [6].

In spin glasses there is a thermodynamic transition at a defined temperature TSG, where the
non-linear susceptibility and the static correlation length diverge. In glass forming liquids it
seems that there is no sharp thermodynamic transition, and no diverging static length. However,
numerical studies have identified long-lived dynamical structures which are characterized by
a typical length and a typical relaxation time, which depend on temperature and density [7].
In order to characterize this behaviour a dynamical non-linear susceptibility was introduced
by Donati et al [8], both for spin models and for structural glasses. They have found that
the dynamical susceptibility exhibits a maximum at some characteristic time which diverges
as the dynamical transition temperature is approached from above. In the annealed version
of the frustrated Ising lattice gas model [9] a similar behaviour has been found, while in the
quenched version the dynamical susceptibility is always increasing, due to the presence of the
thermodynamic transition [10].

Our understanding of the macroscopic process of relaxation in structural glasses, starting
from the microscopic motion of the particles, has been attained using different microscopic
models, for example the hard-square model [11], the kinetically constrained models [12,13] and
the frustrated Ising lattice gas (FILG) model [14]. These models have reproduced some aspects
of the glassy phenomenology, and recently the FILG model has been studied in its quenched
and annealed versions with kinetic constraints [10]. The results found in the annealed version
seems to be closer to the experimental ones. In this paper we consider a two-dimensional
geometrical model, which contains as main ingredients only geometrical frustration without
quenched disorder and without kinetic constraints, as quenched disorder is not appropriate to
study structural glasses and kinetic constraints are somewhat artificial. Similar models have
already been proposed [9, 15] and applied to study granular material [16].

In section 2 we present the model and in section 3 we study its percolation properties. In
section 4 we show the dynamical results, and finally in section 5 we present our conclusions.

2. The model

In this paper we introduce a model which can be considered as an illustration of the concept
of frustration arising as a packing problem. In systems without underlying crystalline order,
frustration is typically generated by the geometrical shape of the molecules, which prevents
the formation of close-packed configurations at low temperature or high density; for systems
with underlying crystalline order, frustration arises when the local arrangement of molecules
kinetically prevents all the molecules from reaching the crystalline state.

An example of a glass-former that has difficulty in achieving crystalline order is ortho-
terphenyl, whose molecule is made of three rings. This system can be loosely modelled with a
simple lattice model, in which ‘T’-shaped objects occupy the vertices of a square lattice with
one of four possible orientations.

Assuming that the arms cannot overlap due to excluded volume, we see that only for
some relative orientations can two particles occupy nearest-neighbour vertices. Consequently,
depending on the local arrangement of particles, there are sites on the lattice that cannot be
occupied (see figure 1). This type of ‘packing’ frustration thus induces defects or holes in the
system. This model resembles the hard-square lattice gas model [11], which can be seen as



Relaxation properties in a lattice gas model with asymmetrical particles 3361

Figure 1. Schematic picture of one particular configuration in a system size of 42 and density
ρ = 9/16.

‘+’-shaped objects on the vertices of a square lattice with excluded volume interaction. A very
important difference between these two models is the internal degree of freedom due to the
particle shape, which is absent from the latter.

We consider a two-dimensional square lattice and impose periodic boundary conditions.
In our system the maximum of density is ρmax = 2/3, at which all possible bonds are occupied
by an arm. A configuration of density ρmax is a ground state of the system, corresponding to
chemical potential µ → ∞. This can be obtained for any size, constructing larger systems
from smaller ones with ρmax and appropriated boundary conditions. In this way one can build
an extensive number of different ground states that lack spatial order.

We have simulated the diffusion and rotation dynamics of this model by Monte Carlo
methods. The dynamics of the particles is given by the following algorithm:

(i) pick a particle at random;
(ii) pick a site at random between the four nearest-neighbour ones;

(iii) choose randomly an orientation of the particle;
(iv) if it does not cause the overlapping of two arms, move the particle into the given site with

the given orientation;
(v) if the diffusion movement is not possible, choose a random orientation and try to rotate

the particle to this new orientation;
(vi) advance the clock by 1/Ns , where Ns is the number of sites, and go to (i).

Studying the dynamics by Monte Carlo simulations, the finite-size effects are larger when
we are near to ρmax, because the particles can be enclosed in cages, and the diffusion is blocked.
In lattices of finite size, cages may be indefinitely stable. This has also been observed in the
hard-square lattice gas model [11], where at the maximum of density the particles are on the
diagonals, but in lattices of finite size indefinitely stable cages of particles are formed at lower
densities.

3. Percolation transition

In order to investigate whether the percolation transition has effects on the dynamics, in this
section we analyse the percolation properties of the model, and relate the percolation density
to a change in the dynamical properties of the model. The particles have three arms, and there
are two bonds per site on the lattice, so the density of bonds occupied by an arm is given by
σ = 3ρ/2, where ρ is the density of particles. Therefore, if the correlations of the arms were
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Figure 2. Finite-size scaling of (a) P(ρ) and (b) S(ρ) for lattice sizes L = 40, 50, 60, 70, 80, 90,
100, 110 and 120. Inset: (a) P(ρ) and (b) S(ρ) for the same sizes.

not important, the arm percolation would occur at the density σc = 1/2, corresponding to
ρc = 1/3. Nevertheless we expect some correlation effects.

We have simulated our system for various lattice sizes around the percolation density in
order to determine ρc. For each density we have reached equilibrium and then, taking 104

steps, we have evaluated the probability of existence of a spanning cluster P and the mean
cluster size S = ∑

s s
2ns , where ns is the density of finite clusters of size s.

Around the percolation density the averaged quantitiesP(ρ) and S(ρ), for different values
of the lattice size L, should obey the finite-size scaling [17]

P(ρ) = FP [L1/ν(ρ − ρc)] (2)

S(ρ) = Lγ/νFS[L1/ν(ρ − ρc)] (3)

where γ and ν are then critical exponents, andFP (x) andFS(x) are universal functions of a non-
dimensional quantity x. Figure 2 shows the finite-size scaling ofP and S. We have selected the
values of the exponent corresponding to the two-dimensional site–bond percolation universality
class [17], that is ν = 4/3 and γ = 43/18, and we have found ρc = 0.315 ± 0.003. The
critical density can also be determined fromP(ρ) as the density at which curves corresponding
to different sizes cross. From the inset of figure 2(a) we see that ρc is between 0.315 and 0.32,
so the arm correlations and the thermal process decrease the critical density with respect to the
random bond problem.

4. Dynamical results

To make a link with the spin-glass theory, where one studies relaxation functions in the form of
the ‘self-overlap’ 〈Si(t)Si(t ′)〉, we wish now to define a self-overlap parameter for our model.
Different definitions of q can be used, and the form of the relaxation functions is different for
different overlap parameters. Here we define a self-overlap parameter similar to that defined
in [8] for liquids, but which also takes into account the orientation of the particles, besides
their position. The orientation of the particle is defined by the discrete values of the angle,
φi = 0, π/2, π or 3π/2, and we define the self-overlap as
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Figure 3. (a) Relaxation functions of the self-overlap for system size 642 and densities ρ = 0.2,
0.3, 0.4, 0.5, 0.55, 0.6, 0.62, 0.63, 0.64, 0.65, 0.655, 0.657 and 0.66. (b) Zoom of the range 0.9–1.0,
where one can see the presence of two distinct steps in the relaxation of the self-overlap.

〈q(t)〉 = 1

Nρ

∑

i

〈ni(t ′)ni(t ′ + t) cos[φi(t
′ + t) − φi(t

′)]〉 (4)

where ni(t) = 0, 1 is the occupation number of site i at time t , φi(t) the orientation of the
particle on site i at time t , N the number of sites and 〈· · ·〉 the average with respect to the
reference time t ′. This parameter is a generalization of the self-overlap defined in [10], where
the orientation φi plays the role of the spin variables. At time t = 0, the self-overlap is
〈q(0)〉 = 1, and goes to zero for t → ∞ in the liquid phase. The glassy phase is signalled by
the fact that 〈q(t)〉 tends for t → ∞ to a value greater than zero.

In figure 3(a) we show the relaxation function of the self-overlap parameter, for a system
of size 642 and densities between ρ = 0.2 and 0.66. Each curve is obtained by averaging
over a time interval for t ′ of 104–108 Monte Carlo steps, depending on the density. At the
highest densities we start to observe two steps in the relaxation functions (see figure 3(b)),
which suggest that two different timescales are beginning to decouple in the system. The first
shorter timescale of the relaxation functions is due to the rotations of the particles in a frozen
environment, which appears as quenched on this timescale, while the second longer timescale
is due to the evolution of the environment and final relaxation to equilibrium. Indeed, we
shall see that the density–density autocorrelation functions, which do not depend on rotational
degrees of freedom, always show a single relaxation time.

We have then compared the relaxation functions 〈q(t)〉 with the predictions that the
mode-coupling theory (MCT) of supercooled liquids makes for the relaxation functions of
supercooled liquids [18], that we now report briefly. The theory makes distinct predictions
for two different timescales, called tσ and τα , which both diverge at the transition Tc, but with
different exponents, tσ ∝ |T − Tc|−1/2a and τα ∝ |T − Tc|−γ , with

γ = 1

2a
+

1

2b
, (5)

so τα/tσ also diverges. The critical exponents a and b are not independent, but are related to
the so-called exponent parameter λ by the equations

"2(1 − a)

"(1 − 2a)
= "2(1 + b)

"(1 + 2b)
= λ. (6)
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size and densities as figure 3. The solid line corresponds
to β = 0.66.

Figure 5. Time–density superposition principle for the
relaxation function of the self-overlap, for densities ρ =
0.62, 0.63, 0.64, 0.65, 0.655, 0.657 and 0.66. The dashed
curve is a stretched exponential with exponent β = 0.71.

Near the transition, and in the intermediate timescale t0  t  τα , where t0 is a microscopic
time, the theory predicts that the relaxation functions can be fitted by

φ(t) = f + hcσg±(t/tσ ), (7)

where f and h are constants, cσ = |σ |1/2 is the so-called critical amplitude and tσ = |σ |−1/2a .
The parameter σ , called the separation parameter, plays the role of Tc − T , being negative
in the liquid phase, and positive in the glassy phase. The universal function g±(t̂), where
± refer respectively to the glassy and liquid phase, depends only on the exponent parameter
λ. It has the limiting behaviour g±(t̂) = t̂−a for t0/tσ  t̂  1, and g+(t̂) = (1 − λ)−1/2,
g−(t̂) = −Bt̂b for 1  t̂  τα/tσ .

Furthermore, in the liquid phase T > Tc, the theory predicts that the relaxation functions
can be fitted by a stretched exponential form (1) in the longest timescale, t � τα , where the
exponent β is independent of the temperature. That means that, plotting the relaxation function
φ(t) versus the rescaled time t/τα , the data should collapse on a single stretched exponential
curve (time–temperature superposition principle).

We have compared the results obtained for the self-overlap relaxation functions with these
predictions. For very low densities, ρ < 0.1, the relaxation function of the self-overlap 〈q(t)〉
of the model is well fitted by an exponential form. For 0.1 < ρ < 0.32, we can fit the relaxation
function with the stretched exponential form, with the exponent β decreasing slowly down to
β ≈ 0.7. For higher values of densities only the long-time tail of the relaxation functions is well
fitted by a stretched exponential, with the exponent β depending very weakly on the density
(constant within the errors) and ranging between β = 0.64 and 0.71. In figure 4 the exponent
β is plotted as a function of the density. Note that ρ = 0.32 corresponds to the arm percolation
of the model. Figure 5 shows the time–density superposition of the relaxation functions 〈q(t)〉,
for densities between ρ = 0.62 and 0.66. Also shown as a dashed line is a stretched exponential
function with an exponent β = 0.71. We then tried to fit the intermediate timescale of the
self-overlap relaxation with the functional form (7). Recall that this fit is expected to be valid
only in a time range t0  t  τα , where t0 is a microscopic time, and τα is the timescale
on which the function decays to zero. In figure 6 we show the result of the fit for densities
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Figure 6. Fit of the intermediate time regime of the
relaxation functions of the self-overlap, for densities
ρ = 0.62, 0.64 and 0.65. The fitting function is
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Figure 7. Dynamical susceptibility for size 642 and
densities ρ = 0.55, 0.6, 0.62, 0.63, 0.64, 0.65, 0.655,
0.657 and 0.66. Inset: the maximum χ(t∗) as a function
of density. The fitting function is a power law χ(t∗) =
0.12(0.664 − ρ)−0.7.

ρ = 0.62, 0.64 and 0.65, where the fitting parameters are λ, f , h and σ . The value of λ given
from the fits is constant within the errors, and equal to λ = 0.770 ± 0.005, which corresponds
to exponents a = 0.295 ± 0.005 and b = 0.52 ± 0.01. Therefore, the relaxation functions
〈q(t)〉 agree quite well with the predictions of MCT of liquids.

We have also studied the behaviour of the dynamical non-linear susceptibility associated
with the self-overlap parameter, which is defined as

χ(t) = N [〈q(t)2〉 − 〈q(t)〉2]. (8)

In figure 7 we show χ(t) for some values of the density. The maximum in the susceptibility
χ(t∗) and the time of the maximum t∗ seem to diverge together when the density grows.
This has also been found previously in other models such as p-spin, Lennard-Jones binary
mixture [8] and the annealed version of the FILG model [10]. In our model we obtain that
the maximum of χ(t∗) can be fitted by the power law χ(t∗) ∝ (ρmax − ρ)−α . Here we have
ρmax = 0.664 ± 0.002 and α = 0.71 ± 0.02. The equilibrium value is χ(t → ∞) = ρ2/2 for
low densities and χ(t → ∞) = 1/2 for the higher ones.

The density–density autocorrelation function and its dependence on the time is an
important property which characterizes the glassy behaviour. We have studied the self-part of
the autocorrelation function of the density fluctuations, defined as

F s
k(t) = 1

N

∑

i

〈eik(ri (t ′+t)−ri (t
′))〉, (9)

where ri (t) is the position of the ith particle in units of the lattice constant. The wavevector
can take the values k = (2π/L)n, where n has integer components nx and ny ranging from
0 to L/2.

Figure 8 shows F s
k(t) corresponding to kx = π and ky = 0 for different densities. For

all densities the whole time interval of the autocorrelation function can be fitted by a stretched
exponential function, f (t) = exp[−(t/τ )β], where the exponent β depends on the density. In
figure 9 we showβ as a function of the density. As happens for the relaxation of the self-overlap,
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Figure 9. Parameter β of the stretched exponential for
the function F s

k(t), for densities ρ = 0.05, 0.1, 0.15,
0.2, 0.25, 0.3, 0.33, 0.35, 0.37, 0.4, 0.45, 0.5, 0.55, 0.6,
0.63, 0.64, 0.65, 0.655, 0.657 and 0.66. The solid line
corresponds to β = 0.82.

the exponent β decreases with the density until a density near ρ ≈ 0.32 is reached. Starting
from this density, which corresponds to arm percolation, the exponent becomes constant,
β ≈ 0.82 (within the error bars), but with a different value of the exponent with respect to the
self-overlap. At densities near to ρmax the finite-size effects become important and β deviates
from the constant value.

Different from what is observed in the relaxation of the self-overlap, the density–density
autocorrelation functions do not show any evidence of the presence of two timescales. This
depends on the fact that the functions F s

k(t) take into account only the positions of the parti-
cles, and not their orientation. On the other hand the self-overlap relaxation 〈q(t)〉 takes into
account both rotational and translational degrees of freedom, and shows a two-step decay for
high densities.

The relaxation times τα , obtained from the fit ofF s
k(t) and 〈q(t)〉 with a stretched exponen-

tial function, are shown in figure 10. They can both be fitted by a power law τ ∝ (ρmax −ρ)−γ ,
with γ = 2.70 ± 0.02 and ρmax = 0.666 ± 0.003, but with a different prefactor. Note that the
value of γ coincides within the errors with that deduced by the exponents a and b given by
the fit of figure 6, using the relation (5) predicted by MCT [18] which gives γ = 2.65 ± 0.05.

We have calculated the diffusion coefficient from the mean-square displacement 〈+r(t)2〉
at very long times. The values obtained for D are well fitted by a power law near ρmax,
D ∝ (ρmax −ρ)γ with γ = 2.70 ± 0.02 and ρmax = 0.666 ± 0.003 (see the inset of figure 10).
The power law agrees with the law found in some lattice gas models (the kinetically constrained
model [12]) but it is different from the law found in the hard-square lattice gas model [11].
This singular behaviour of D is in accordance with the prediction of MCT. From the behaviour
of D and τ we obtain D−1 ∝ τ and therefore, due to the proportionality of τ and η, where η is
the viscosity, the Stokes–Einstein relation D−1 ∝ η. The fact that the model does not capture
the phenomenon of ‘breakdown of Stokes–Einstein relation’, usually observed in supercooled
liquids, may be due to the fact that the model is overly simplified with respect to glassy liquids.
Note however that the MCT does not capture this phenomenon either.
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5. Conclusions

We have proposed a two-dimensional geometrical model, based on the concept of geometrical
frustration which is generated by the particle shape. This model has neither quenched disorder
nor kinetic constraints.

A self-overlap parameter 〈q(t)〉 has been defined which takes into account the orientation
of particles, and the corresponding dynamical non-linear susceptibility has been studied. It has
been found that the self-overlap can be fitted at long times by a stretched exponential function,
with an exponent β decreasing until the arm percolation is reached, and constant for higher
densities. The α-relaxation time found from the fit diverges at the maximum density ρ = 2/3,
with an exponent γ = 2.7. For high density, near to the maximum density and structural arrest
of the system, the self-overlap parameter develops a two-step relaxation, due to the different
times of the rotational and translational dynamics.

The dynamical susceptibility shows a peak at some characteristic time, which seems to
diverge at the maximum density. This gives evidence of long-lived dynamical structures with
a growing length and relaxation time, as found in molecular dynamics simulations of Lennard-
Jones liquids.

Similar results have been found for the self-part of density–density relaxation functions,
but in this case there is only one step in the relaxation, due to the absence of the rotational
degrees of freedom in the definition of F s

k(t).
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